

Name: _____

Date: _____

Math 12 Honours: Section 5.1 Solving Exponential Functions

1. Solve for all values of "x":

a) $8^{x+1}(32) = 128$	b) $(27^{2x})^3 = \frac{1}{729}$
c) $\frac{8^{-1} + 2^{-3}}{64^x} = (2^{2x-3})$	d) $\frac{256^x}{4^{2x-6}} = (2^{2x})^x$
e) $(8^{x+4})^x = 128^{2x+3}$	f) $\frac{(729^x)}{3 \times 9^{2x-3}} = (27^{2x+3})^x$

2. Use Logarithms to solve for "x":

a) $4^{x-3} = 10$	b) $6^{2x+1} = 14$
c) $9^{x^2} = 20$	d) $10^{3-x} = 21$
e) $(2^{2x})3^x = 8000$	f) $6^{x^3} = 20$

3. Rewrite each of the following in logarithm form:

a) $e^5 = y$	b) $2a^b = c$	c) $2(3x)^{15} = y$
--------------	---------------	---------------------

4. Evaluate each of the following without a calculator:

a) $\log_5 125$	b) $\log_2 128$	c) $\log_9 2183$
d) $\log_{16} 64$	e) $\log_7 \sqrt{343}$	f) $(\log_{128} 1024)^{-1}$
g) $\log_8 \left(\frac{1}{4}\right)$	h) $-\log_{2.5} \left(\frac{125}{8}\right)$	i) $\left(\log_{0.125} 64^{\frac{2}{3}}\right)^{-2}$

5. Simplify each of the following logarithms without using a calculator:

a) $\log_6 24 + \log_6 9$	b) $\log_5 100 - \log_5 4$	c) $\log_4 8 + \log_4 64$
---------------------------	----------------------------	---------------------------

d) $\log_3 324 - \log_3 4$	e) $\log_4 12 + \log_4 \left(\frac{2}{3}\right) + 3\log_4 2$	f) $\log_8 24 + 2\log_8 2 - \log_8 3$
g) $\log_3 \sqrt{45} - 0.5\log_3 5 + \log_3 9$	h) $\log_3 5! - \log_3 4 - 1$	i) $\log_{x+1} (x^3 + 3x^2 + 3x + 1)$

6. Solve for all possible values of "x": $3^{x-1} \left(9^{\frac{3}{2x^2}}\right) = 27$

7. Suppose you have the equation $2^{5x-3} = -1$, is it possible to have a solution? Explain and justify your answer:

8. Given the equation, $m^x = m^y$, how many cases are there such that the equation is true?

9. Find all values of "x" such that: $6^2 (6^x)^x = (6^x)(6^x)(6^x)$

10. Solve for all possible values of "x": $4 \times 9^x - 21 = 25 \times 3^x$

11. Solve for "x": $2^{x+1} + 2^x = 2^3 + 2^5 + 2^{7-x}$

12. Suppose that $P = 2^m$ and $Q = 3^n$. Which of the following is equal to 12^{mn} for every pair of integers (m,n)?

a) P^2Q b) P^nQ^m c) P^nQ^{2m} d) $P^{2m}Q^n$ e) $P^{2n}Q^m$ (AMC)

13. Solve the equation for "y" in terms of "x". For what values of "x" is there no value of "y" that satisfies the equation: $(x+2)^{2y} - x^2 = 3$

14. Suppose that $60^a = 3$ and $60^b = 5$. What is the value of $12^{\frac{1-a-b}{2-2b}}$?_{AMC12}

15. Suppose "a", "b", "c" and "d" are positive integers, then what is the smallest possible value of $a+b+c+d$?

$$4^a + 4^b + 4^c + 4^d = 4^{1023}$$

16. Given the equations below, find all the ordered triples of real values (a,b,c) that satisfy the them:

$$c^a = b^{2a}, \quad 2^c = 2(4^a), \quad a + b + c = 10$$